

You know, for search

11. května 2011, EurOpen - Pavlov

Outline

● Talking about ElasticSearch and giving some
demos

● What you should take away from this talk?

About me

● Lukáš Vlček (@lukasvlcek)
● Java developer since 2001
● Joined Red Hat (JBoss division) in 2010
● Member of JBoss.org team, focusing on search

What is ElasticSearch ?

● Open Source (ASL2)
● Distributed (cloud friendly)
● Highly-available
● RESTful search engine (on top of Lucene)
● Designed to speak JSON (JSON in, JSON out)
● Author: Shay Banon (@kimchy)

Where ?

https://github.com/elasticsearch/elasticsearch

http://www.elasticsearch.org/

Demo #1

Searching in emails

REST API: Faceted search, Highlighting

RESTful

● Network interface for data indexing, searching
and administration.

curl XGET 'http://localhost:9200/index1,index2/typeA,typeB/_search' d '{
 “query“ : { “match_all“ : {} }
}'

You can query one or more indices.
Indices can have aliases, you can also
use _all for all indices.

Each index have one or more types, something
like columns in DB table.

http://localhost:9200/index1,index2/typeA,typeB/_search

Talking to the cluster

Node 3Node 2Node 1

Client

● REST client

● Many clients built on top of REST API
● Perl, PHP, Python, Ruby, Erlang, ... etc

Demo #2

RESTful JSON teaser

Talking to the cluster

Node 3Node 2Node 1

Client

● Native client in Java and Groovy

● Client type:
● Node client
● Transport Client

Highly available

● For each index you can specify:
● Number of shards

– Each index has fixed number of shards
● Number of replicas

– Each shard can have 0-many replicas, can be changed
dynamically

ZEN Discovery

Node 1 Node 4Node 3Node 2

A B C

A1

A2

A3

A1

A2

A3

A1

A2

A3

B1

B2

B1

B2

B1

B2

B1

B2

C1

C: { shards: 1, replicas: 0 }B: { shards: 2, replicas: 3 }A: { shards: 3, replicas: 2 }

Gateway (longterm persistency of cluster data & metadata)

ZEN Discovery

Node 1 Node 4Node 3Node 2

A B C

A1

A2

A3

A1

A2

A3

A1

A2

A3

B1

B2

B1

B2

B1

B2

B1

B2

C1

C: { shards: 1, replicas: 4 }B: { shards: 2, replicas: 3 }A: { shards: 3, replicas: 2 }

C1 C1 C1 C1

Can not allocate all replicas!
Check Health API

Gateway (longterm persistency of cluster data & metadata)

Nodes do not have to be equal

● Can be a master
● Can be a data node
● Can allow for REST transport interface

● Http, memcached, thrift

● Index store (file, memory)
● ...

Node 3Node 2

Node 1

Gateway

● Long time persistency allows for whole (and
partial) cluster backup and recovery.

Types:
● Local (default)
● NFS
● HDFS
● AWS: S3

Demo #3

Dynamic allocation of indices,
shards, replicas and Health API

Admin API

● Indices
– Status
– CRUD operation
– Mapping, Open/Close, Update settings
– Flush, Refresh, Snapshot, Optimize

● Cluster
– Health
– State
– Node Info and stats
– Shutdown

Demo #4

Admin API: getting JVM and OS stats

Rich query API

● There is rich Query DSL for search, includes:
● Queries

– Boolean, Fuzzy, MLT, Prefix, DisMax, ...
● Filters

– And/Or/Not, Boolean, Geo, Missing, Exists, ...
● Highlighting
● Sort
● Facets

– on a next slide...

Facets

● Facets allows to provide aggregated data for
the search request.
● query
● filter
● terms
● range
● histogram
● statistical
● geo distance

Scripting support

● There is a support for using scripting languages
in many places (for example for custom scoring,
script fields, script key in facets ...)
● mvel (default)
● JS
● Groovy
● Python

Parent / Child

● The parent/child support allows to define a
parent relationship from a child to a parent type.
● has_child (query, filter)
● top_children (filter)

River

● Let's listen on stream of changes and index the
data...
● CouchDB
● RabbitMQ
● Twitter
● Wikipedia

Versioning

● “update if current” functionality
● ie: I can get a document, change it and then put

it back in (referencing the version ID I fetched)
and it will either index or fail (if the document
has been modified in the interim)

● Completely real-time

Percolator

● The percolator API allows to register queries
against an index, and then send a percolate
request which includes a document, and getting
back the queries that match on that document
out of set of registered queries.

Q&A

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

