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Outline

● Talking about ElasticSearch and giving some 
demos

● What you should take away from this talk?



  

About me

●  Lukáš Vlček ( @lukasvlcek )
●  Java developer since 2001
●  Joined Red Hat (JBoss division) in 2010
●  Member of JBoss.org team, focusing on search



  

What is ElasticSearch ?

● Open Source (ASL2)
● Distributed (cloud friendly)
● Highly-available
● RESTful search engine (on top of Lucene)
● Designed to speak JSON (JSON in, JSON out)
● Author: Shay Banon ( @kimchy )



  

Where ?

https://github.com/elasticsearch/elasticsearch

http://www.elasticsearch.org/



  

Demo #1

Searching in emails

REST API: Faceted search, Highlighting



  

RESTful

● Network interface for data indexing, searching 
and administration.

curl XGET 'http://localhost:9200/index1,index2/typeA,typeB/_search' d '{
  “query“ : { “match_all“ : {} }
}'

You can query one or more indices. 
Indices can have aliases, you can also 
use _all for all indices.

Each index have one or more types, something 
like columns in DB table.

http://localhost:9200/index1,index2/typeA,typeB/_search


  

Talking to the cluster

Node 3Node 2Node 1

Client

● REST client

● Many clients built on top of REST API
● Perl, PHP, Python, Ruby, Erlang, ... etc



  

Demo #2

RESTful JSON teaser



  

Talking to the cluster

Node 3Node 2Node 1

Client

● Native client in Java and Groovy

● Client type:
● Node client
● Transport Client



  

Highly available

● For each index you can specify:
● Number of shards

– Each index has fixed number of shards
● Number of replicas

– Each shard can have 0-many replicas, can be changed 
dynamically



  

ZEN Discovery
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Gateway (longterm persistency of cluster data & metadata)



  

ZEN Discovery
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Nodes do not have to be equal

● Can be a master
● Can be a data node
● Can allow for REST transport interface

● Http, memcached, thrift

● Index store (file, memory)
● ...

Node 3Node 2

Node 1



  

Gateway

● Long time persistency allows for whole (and 
partial) cluster backup and recovery.

Types:
● Local (default)
● NFS
● HDFS
● AWS: S3



  

Demo #3

Dynamic allocation of indices,
shards, replicas and Health API



  

Admin API

● Indices
– Status
– CRUD operation
– Mapping, Open/Close, Update settings
– Flush, Refresh, Snapshot, Optimize

● Cluster
– Health
– State
– Node Info and stats
– Shutdown



  

Demo #4

Admin API: getting JVM and OS stats



  

Rich query API

● There is rich Query DSL for search, includes:
● Queries

– Boolean, Fuzzy, MLT, Prefix, DisMax, ...
● Filters

– And/Or/Not, Boolean, Geo, Missing, Exists, ...
● Highlighting
● Sort
● Facets

– on a next slide...



  

Facets

● Facets allows to provide aggregated data for 
the search request.
● query
● filter
● terms
● range
● histogram
● statistical
● geo distance



  

Scripting support

● There is a support for using scripting languages 
in many places (for example for custom scoring, 
script fields, script key in facets ...)
● mvel (default)
● JS
● Groovy
● Python



  

Parent / Child

● The parent/child support allows to define a 
parent relationship from a child to a parent type.
● has_child (query, filter)
● top_children (filter)



  

River

● Let's listen on stream of changes and index the 
data...
● CouchDB
● RabbitMQ
● Twitter
● Wikipedia



  

Versioning

● “update if current” functionality
● ie: I can get a document, change it and then put 

it back in (referencing the version ID I fetched) 
and it will either index or fail (if the document 
has been modified in the interim)

● Completely real-time



  

Percolator

● The percolator API allows to register queries 
against an index, and then send a percolate 
request which includes a document, and getting 
back the queries that match on that document 
out of set of registered queries.



  

Q&A



  

Thank you!
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