
CPU vulnerabilities
EuroOpen Žatec 

05/2018 
Vít Šembera



What is a CPU ?
• Wikipedia: A central processing unit (CPU) is the electronic 

circuitry within a computer that carries out the instructions of 
a computer program by performing the basic arithmetic, 
logical, control and input/output (I/O) operations specified by 
the instructions.

It is that fat 
expensive chip that 
has a big cooler 
attached.



CPU executes instructions…
• Instructions format and behavior are 

strictly defined in vendor specification 
• State of a CPU is defined by previous 

state, instruction and inputs 
• Result is always predictable         
        
    …really?



Try this on Pentium B1 stepping:
• Binary code F0 0F C7 C8 
• Instruction: lock cmpxchg8b eax 
• Instruction can be executed with any privilege 
• The instruction is invalid – operand should be 

memory reference 
• Result should be invalid instruction exception 
• Instead CPU halts and must be reset to 

recover



Erratum
• A correction of a published text 
• As a general rule, publishers issue an erratum for a production error 
• Design errors and mistakes in a CPU's hardwired logic may also be 

documented and described as errata 
• Can be fixed by new silicone stepping, new µcode or BIOS/kernel 

update 
• F00F bug is erratum #81 in Intel‘s „Pentium specification update“ 

doc 
• „Invalid operand with locked CMPXCHG8B instruction“ 
• Fixed in stepping B2



A little bit of history…



1971: i4004 – the Beginning

• 4 bit architecture 
• 256 bytes ROM 
• 32 bit RAM 
• 16 4bits registers 
• 10 bit shift register 
• PMOS, 2,300 transistors 
• 60,000 ops 
• maximum operating frequency 740 KHz. 
• Ucc 15V 
• Family of 7 supporting chips 
• No errata ☺



1972: i8008
• 8 bit 
• 16kB memory 
• 8bit registers A,B-E, H,L + 14b PC 
• Internal 7 level stack 
• Clock 500-800 kHz 
• Up to 80k ops 
• PMOS, 3500 transistors 
• Still needs significant amount of supporting logic 
• No errata



1974: i8080
• Instruction set and register set compatible with i8008 
• Opcodes not binary compatible 
• Stack pointer register SP 
• Registers can be coupled to 16b  
• 64 kB memory 
• NMOS, 6k transistors 
• 0,64 MIPS 
• Ucc +12v, +5V, -5V 
• Clock 2-3.125 MHz 
• Needs only 2 supporting chips 
• Still no errata



1978: i8086
• First fully 16 bit CPU – x86 is raising 
• Source compatible with i8080 
• First  µCode 
• 1MB memory 
• Segment regs (gen regs are still 16b) 
• External FPU 
• Clock 5-10 MHz 
• HMOS (NMOS), 29k transistors 
• Ucc 5V 
• First known (not official) CPU design bugs: 

• Interrupts Following MOV SS,xxx and POP SS Instructions May Corrupt Memory 
• Interrupted String Instructions With Multiple Prefixes Do Not Resume Correctly



1982: i80286
• 16 bits 
• First MMU (protected mode)  
• Still separate FPU 
• 16MB memory 
• NMOS, 134k transistors 
• Clock up to 12.5 MHz 
• Up to 2.66 MIPS 
• 9 unofficial bugs (i.e. POPF) for B-2, B-3 steppings



1985: i386
• Entering 32b era – 32b gen registers 
• Paging, VM86, new DR and CR regs 
• Adressable 4GB memory 
• Initialy 12MHz, later up to 33MHz 
• CHMOS, 275k transistors 
• External FPU and cache 
• 11 MIPS 
• Ucc 5V, later 3 - 3.3V 
• No official errata, unofficial sources for A1 stepping counts 31 bugs  
• Well known Multiply bug - fixed CPUs are marked ΣΣ 



1989: i486
• Faster i386 with FPU integrated 
• Internal 8-16 kB WT/WB cache and FPU 
• New instructions (i.e. CMPXCHG) 
• Clock 20-100 MHz 
• 1.2M transistors 
• Ucc 2.5-5V 
• No errata found



1993: Pentium, Pentium MMX (P5)
• Improved cache (asociativity, separate I&D) 
• Dual ALU pipeline 
• Branch predictor (BPB 256-512 entries) 
• 57 new MMX instructions 
• 64b external bus 
• Much faster FPU 
• Clock 60-300MHz 
• BiCMOS, 3.3M transistors 
• Ucc 3.3-5V 
• First official specification update: counts 81 errata 

• FDIV bug – replacement program 
• F00F bug 



1995: Pentium Pro to Pentium III (P6)
• Speculative execution, out of order completion 
• Register renaming 
• Extended pipeline (from 5 to 14 stages) 
• SSE 
• L1 cache 2x16kB 
• L2 cache up to 2MB 
• Clock 150-1400 MHz 
• PSN – privacy issues 
• 90 errata (37 fixed) 

• #5: Fast Strings REP MOVS may not transfer all 
data



2000: Pentium 4
• Aka Netburst 
• Hyperthreading 
• Rapid execution (ALU clock doubled) 
• Execution trace cache (µop cache) 
• Power dissipation problems (1 core TDP 115W) 
• Max clock 3.8 GHz (failed to reach 10GHz planned) 
• Hyperpipeline (20-31 stages) – improved branch predictor 
• Planned 40-50 pipeline stages, abandoned 
• Errata N1-N100 (49 fixed) 

• N29: REP MOV Instruction with Overlapping Source and Destination May 
Result in Data Corruption



2006: Intel Core
• Return back to P6 after NetBurst fail 
• Multiple cores (1 to 6) 
• Larger L1 cache (32+32kB) 
• No hyperthreading (P6) 
• VT-x 
• SSE3 
• clock 2.13-3.3 GHz 
• Errata Ax1-Ax129 
• Huge public (Theo de Raadt, Linus Torvalds) response for errata 

• AI21: Global Pages in the Data Translation Look-Aside Buffer (DTLB) May Not 
Be Flushed by RSM instruction before Restoring the Architectural State from 
SMRAM



Following Intel Core generations
2008 Intel Pentium Dual Core (Nehalem) : AN1-AN112 (26 fixed) 
2011 Intel Core 2nd gen (Sandy Bridge) : BJ1-BJ138 (2 planned to 
fix) 
2012 Intel Core 3rd gen (Ivy Bridge) : BV1-BV116 (none fixed) 
2013 Intel Core 4th gen (Haswell) : HSD1-HSD173 (none fixed) 
2014 Intel Core 5th gen (Broadwell) : BDM1-BDM129 (9 fixed) 
2015 Intel Core 6th gen (Skylake) : SKL1-SKL159 (none fixed) 
2016 Intel Core 7th gen (Kaby Lake) : KBL001-KBL103 (1 fixed) 
2017 Intel Core 8th gen (Cofee Lake) : 001-090 (none fixed)



CPU pipeline
• Since 1961 (IBM  stretch project) 
• Bubbles (data dependency, branching) 
• Multiple execution units, out of order 

execution, register renaming (Thomasulo 
algorithm - 1967) 
• Speculation, instruction retirement, 

branch prediction



Intel pipeline optimization
• 4004 – 8080: each instruction takes several clock cycles 
• 8086 – 80386: prefetching queue (6,8,16 bytes), loosely coupled units 
• i486: first tightly coupled pipelining (simple instruction per cycle) 
• Pentium: dual integer 5 stage pipeline (up to 2 instructions per cycle), 

2-bit saturated counter branch predictor 
• P6: speculative execution, out of order completion, register renaming 

(pipeline 10-14 stages), 2-level local branch predictor (4-bits history 
buffer) 
• Netburst: HT (2 register sets to fill pipeline 20-31 stages long), 2 level 

BTB, RSB, IB target array, loop detector  
• Core: 14-19 stage pipeline, larger BTB, improved branch predictor – 

details unknown



Speculation side effects
• Internal CPU state: registers, caches, counters etc. 
• Can be accessible directly or indirectly (side channel method) 
• CPU state should be modified only on instruction retirement 
• State is modified (cache, branch predictors) also by unretired instructions  
-> problem 
• Short malicious code can be executed speculatively and modified CPU 

state can be read out 
• There are several new attacks using speculative state modification in 

combination with side channel state exfiltration 
• All CPUs with speculative execution are vulnerable (i.e. Intel CPUs since 

P6)



Spectre
• All current CPUs with speculative 

execution are vulnerable 
• Attack stages: 

1. Preparation: branch predictor training 
with valid parameters, side channel init 

2. Speculation: speculative execution with 
invalid parameters 

3. Extraction: read out modified state 
through side channel



Internal CPU structures
• Side channel can be 

1. Cache (flush&reload, prime&probe, evict&time…) 
2. Pattern History Table (2-level branch predictor) 
3. Branch Target Buffer 
4. Return Stack Buffer 
5. Translate Lookaside Buffer … 

• Side channel is affected by noise (usually 1-3%)



What data can be read ?
• Different process memory space 
• Kernel memory space 
• Hypervisor space 
• Different VM space 
• GSX enclave 
• SMM 



How it works – Spectre v1
for (i = 0; i < predictor_buffer_len; i++)    // number of repetitions architecture dependent 
  func(1);                                                 // predictor training for index validity check 
clflush();                                                 // eviction can be used 
func(attack_index);                                 // index is out of range 
for (i = 0; i < 256; i++)                             // go through 256 cache lines 
   time = measure_access(array1[i]);        // one access (cache hit) will be shorter 

void func(index) {                                   // victim code 
  if (index < array2_size)                         // validity check 
    tmp ^= array1[array2[index]*clsize] ;  // 2x access to memory needed. Array1 is indexed 
}                                                            // memory content at addr &array2[]+index. 
                                                             // Corresponding cache line to byte value is 
loaded 



How it works - Spectre v2
• Find a gadget like tmp ^= array1[array2[index]] in a victim function 
• Find an indirect jump/call in a victim function 
• The victim function must be callable from attacker space (a shared library 

can be used) 
• Make a copy of a page containing gadget in attacker space (CoW) 
• Replace the gadget code with the RET instruction 
• Train IBP buffer in attacker space with series of calls targeting gadget 

address (former code replaced by RET) 
• Prepare index value, flush cache containing address of indirect jump and call 

victim function 
• Mistrained predictor will jump to a gadget with attacker index value 
• Side channel read is same as with Spectre v1



Spectre – mitigation 1/4
• Masking index value before test: 

tmp = array1[array2[index & 0xff]]; 
if (index < maxsize) 
 … 

• Used in linux kernel after source code static analysis



Spectre – mitigation 2/4
• Retpolines 
• Created at google zero labs 
• Inserted by compiler 
• Example: 

  
 

   call set_up_target;  (1) 
capture_spec:            (4)  
   pause;  
   jmp capture_spec;  
set_up_target:  
   mov %r11, (%rsp);    (2)  
   ret;                         (3) 

 jmp *%r11



Spectre – mitigation 3/4
• Fence: 

if (index < maxsize) { 
 asm („lfence“); 
 tmp = array1[array2[index]]; 
} 

• LFENCE instruction does not execute until all prior instructions 
have completed locally, and no later instruction begins 
execution until LFENCE completes 
• C/C++ equivalent is _mm_lfence(void)



Spectre – mitigation 4/4
• New control bits in MSR – IA32_SPEC_CTRL.IBRS, 

IA32_SPEC_CTRL.STIBP, IA32_PRED_CMD.IBPB 
• Introduced by µcode update on 2/2018 for almost all Core2 CPUs 
• Indirect Branch Restricted Speculation (IBRS): Restricts speculation of 

indirect branches. 
• Indirect Branch Predictor Barrier (IBPB): Ensures that earlier code’s 

behavior does not control later indirect branch predictions.  
• Single Thread Indirect Branch Predictors (STIBP): Prevents indirect 

branch predictions from being controlled by the sibling Hyperthread.  
• IBRS – huge performance impact, refused for linux kernel (retpolines 

used instead).



Meltdown
• Specific for Intel CPU 
• CPU checks access priviledges at the end of 

speculative execution (before retirement) 
• Approach same as Spectre, but simpler – user 

space code can speculatively read kernel memory.

retry: mov al, byte [rcx] 
          shl rax, 0xc 
          jz retry 
          mov rbx, qword [rbx + rax]



Meltdown – mitigation
• Kernel page table isolation (KPTI) – separate PTT for user and 

kernel spaces 
• User space code cannot see kernel pages – no mapping exists 
• Performance impact – for each syscall CR3 must be reloaded 

and TLB flushed (new CPUs has PCID feature – only part of TLB 
must be flushed)



BranchScope
• Attacking BPU itself 
• BPU consists of BTB and DP 
• Side channel is Pattern History Table – part of BPU 
• Ability to determine victims branch taken/not taken state

1st level predictor – saturating counter 
(FSM) 2nd level adaptive predictor – each entry is 

FSM



How it works - BranchScope
• Forces to use 1-level predictor (T/nT decision dependent only 

on PC) 
• Slows down victim proces (i.e. modifies scheduler) to allow 

only single branch execution during context switch 
• Stages: 

1. Prime PHT entries (series of random branches – about 100k branch 
and/or nop instructions needed) 

2. Victim code execution (PHT state change) with attacker branch 
intensive code running to keep victim using 1-level predictor 

3. Probe PHT entry (examine branch target) – FSM uses 2-bit counter, 
by TT, NN probe can be current state determined. Resulted time is 
measured to decide miss/hit.



Branchscope mitigation
• SW based: 
• Conditional instructions (i.e. CMOV) instead of branches 
• Change algorithms to remove branch dependecies on data 

• HW based: 
• PHT randomization (adding a random input to index function) 
• Explicit BPU disablement for sensitive branches 
• BPU partitioning (i.e. separate BPU for user, kernel and GSX)



Intel SGX
• Software Guard Extensions 
• Since Skylake 
• CPU circuits and instructions providing protection against 

compromised user and system code  
• Even kernel and hypervisor has no access to Secure Enclave 
• Protection against physical memory attacks (encrypted memory) 
• Data are encapsulated and code can be entered and leaved only 

by special instructions through Call Gate 
• SGX is proved to be Spectre and BranchScope vulnerable



Intel ME
• Computer embedded in the PCH (initially MCH) 
• Own MAC and IP address (OOB interface) 
• All network traffic goes to ME first 
• Communicates through HCI with host OS 
• Serial host console can be attached 
• First implemented inside of ICH7 in 2005 for high-end systems 
• Since 2008 embedded in all chipsets  
• Non optional, part of booting process and power management  
• Running independently on the power state of main CPU 
• In fact there are 3 x86 CPUs inside the chipset 
• Initially ARC core with ThreadX RTOS 
• Since ME 11.x Intel Quark x86 with MINIX 3



Intel AMT



Rings of privileges



What Intel does to secure ME code ?
• Some ME and AMT modules encoded with Huffman code since ME 6.x 
• ARC core Huffman dictionary was decoded already 
• Quark (ME 11.x+) dictionary is not publicly known yet 
• It was claimed on June 2017 that 89% of code and 86% of data are 

decoded 
• Intel released INTEL-SA_00086 advisory for ME 6.x-11.x in Q3 2017 

• CVE-2017-5705 
• CVE-2017-5708 
• CVE-2017-5711 
• CVE-2017-5712 

 -> Attacker can execute arbitrary code on ME



Silent Bob is Silent
• AMT uses digest auth protocol for Admin user 
• In Q2 2017 critical vulnerability was published 
• CVE-2017-5689: when empty auth response is sent, Admin is 

always authenticated 
• It is enough to have http proxy and clear a response value 
• CVSSv3 score of 9.8 out of 10 
• There is > 5000 AMT accessible over internet (found by Shodan)



Summary
• Modern CPUs contain a tens of “errata” in each generation 

causing unpredictable CPU behavior 
• All vendors have same problems 
• Speculative execution has exploitable side effects – fix will 

need architectural redesign 
• Most risks can be mitigated on µcode, BIOS, compiler or OS 

level but have performance impact 
• CPU management subsystems have vulnerabilities and are 

dangerous when exploited 


