CPU vulnerabilities

EuroOpen Zatec
05/2018
Vit Sembera

What is a CPU ?

» Wikipedia: A central processing unit (CPU) is the electronic
circuitry within a computer that carries out the instructions of
a computer program by performing the basic arithmetic,
logical, control and input/output (I/O) operations specified by
the instructions.

It is that fat
expensive chip that
has a big cooler
attached.

CPU executes instructions...

try 32 KB Irerwcdon Cazhe

: . l ,?n':n (B W) o S
* Instructions format and behavior are i
strictly defined in vendor specification I
* State of a CPU is defined by previous 55 5| 55
state, instruction and inputs

 Result is always predictable

...really?

Try this on Pentium B1 stepping:

* Binary code FO OF C7 C8
* Instruction: lock cmpxchg8b eax
* Instruction can be executed with any privilege

* The instruction is invalid - operand should be
memory reference

 Result should be invalid instruction exception

* Instead CPU halts and must be reset to
recover

Erratum 4\

A correction of a published text v
* As a general rule, publishers issue an erratum for a production error

« Design errors and mistakes in a CPU's hardwired logic may also be
documented and described as errata

« Can be fixed by new silicone stepping, new ucode or BIOS/kernel
update

* FOOF bug is erratum #81 in Intel‘s ,,Pentium specification update
doc

« ,Invalid operand with locked CMPXCHGS8B instruction
 Fixed in stepping B2

1950s
Silicon
Transistar

Transistor

Transistors

1970s

&bt
M <ioplocessa

T B
e atite & & L5

4500
Transistors

A little bit of history...

1980s
33-bit

1990s

3e-Ck
Iicicprocessor

3,100,000
Transistors

2000s

4-bit
Micoocessie

592,000,000
Transistors

2010s

3072 Core
apPU

B,000.000,000
Transistors

1971: 14004 — the Beginning

* 4 bit architecture

¢ 256 bytes ROM

* 32 bit RAM

* 16 4bits registers

* 10 bit shift register

* PMOS, 2,300 transistors
* 60,000 ops

* maximum operating frequency 740 KHz.
* Ucc 15V

* Family of 7 supporting chips

* No errata &

1972: 18008

* 8 bit

* 16kB memory

* 8bit registers A,B-E, H,L + 14b
* Internal 7 level stack

* Clock 500-800 kHz

« Up to 80k ops

* PMOS, 3500 transistors i
* Still needs significant amount of supporting logic
* NO errata

B ARBAaaRRu
ﬂﬂ A DBORABIANE

197418080

* Instruction set and register set compatible with i8008
« Opcodes not binary compatible
« Stack pointer register SP

* Registers can be coupled to 16b
* 64 kB memory

 NMOS, 6k transistors

* 0,64 MIPS

« Ucc +12v, +HV, -5V

* Clock 2-3.125 MHz

* Needs only 2 supporting chips

* Still no errata

1978: 18086

First fully 16 bit CPU - x86 is raising
Source compatible with 18080

First pCode

1MB memory

Segment regs (gen regs are still 16b)
External FPU

Clock 5-10 MHz

HMOS (NMOS), 29k transistors

Ucc 5V

First known (not official) CPU design bugs:
* Interrupts Following MOV SS,xxx and POP SS Instructions May Corrupt Memory
* Interrupted String Instructions With Multiple Prefixes Do Not Resume Correctly

1982: 180286

* 16 bits

 First MMU (protected mode)
» Still separate FPU

* 16MB memory

« NMOS, 134k transistors

e Clock up to 12.5 MHz

* Up to 2.66 MIPS

* 9 unofficial bugs (i.e. POPF) for B-2, B-3 steppings

1985: 13806 |

* Entering 32b era - 32b gen registers | gggﬁ » |
» Paging, VM86, new DR and CR regs l VineLeo :; l
* Adressable 4GB memory ~

e |nitialy 12MHz, later up to 33MHz

« CHMOS, 275k transistors

 External FPU and cache —— E—
* 11 MIPS ;:‘-‘L{;“ ozl
« Ucc 5V, later 3 - 3.3V e

« No official errata, unofficial sources for A1 stepping counts 31 bugs
« Well known Multiply bug - fixed CPUs are marked 22

1989: 14386

 Faster i386 with FPU integrated

* Internal 8-16 kB WT/WB cache and FPU
* New instructions (i.e. CMPXCHG)

* Clock 20-100 MHz

* 1.2M transistors

* Ucc 2.5-5V

* No errata found

1993: Pentium, Pentium MMX (P5)

ABESEI~)4
337

* Improved cache (asociativity, separate 1&D) ,'
* Dual ALU pipeline 'me|®
* Branch predictor (BPB 256-512 entries) pentium™

* 57 new MMX instructions
* 64b external bus

* Much faster FPU i 8
* Clock 60-300MHz

* BiCMOS, 3.3M transistors WUAKE
* Ucc 3.3-5V /

* First official specification update: counts 81 errata ! .
* FDIV bug - replacement program % B
« FOOF bug

1995:

Pentium

Pro to Pentium Il (P6)

« Speculative execution, out of order completion
* Register renaming
« Extended pipeline (from 5 to 14 stages)

« SSE

* L1 cache 2x16kB

* L2 cache up to 2MB
 Clock 150-1400 MHz
* PSN - privacy issues
* 90 errata (37 fixed)

 #5: Fast Strings REP MOVS may not transfer all

data

2000:; Pentium 4

« Aka Netburst

* Hyperthreading

* Rapid execution (ALU clock doubled)
« Execution trace cache (pop cache)

* Power dissipation problems (1 core TDP 115W)

* Max clock 3.8 GHz (failed to reach 10GHz planned)

* Hyperpipeline (20-31 stages) - improved branch predictor
 Planned 40-50 pipeline stages, abandoned

* Errata N1-N100 (49 fixed)

* N29: REP MOV Instruction with Overlapping Source and Destination May
Result in Data Corruption

2000: Intel Core

INTEL(F) CORE™ i7

i7-7709

« Return back to P6 after NetBurst fail SR38 3,606z
* Multiple cores (1 to 6) e
* Larger L1 cache (32+32kB)
* No hyperthreading (P6)

e VT-X

« SSE3

 clock 2.13-3.3 GHz

e Errata Ax1-Ax129

* Huge public (Theo de Raadt, Linus Torvalds) response for errata

 Al21: Global Pages in the Data Translation Look-Aside Buffer (DTLB) May Not
Eﬁ\ &lﬁhed by RSM instruction before Restoring the Architectural State from

Following Intel Core generations

2008 Intel Pentium Dual Core (Nehalem) : AN1-AN112 (26 fixed)
2011 Intel Core 2nd gen (Sandy Bridge) : BJ1-BJ138 (2 planned to

fix)
20
20
20
20
20
20

N OO N W N

nte
nte
nte
nte
nte
nte

| Core 3rd gen (lvy Bridge) : BV1-BV116 (none fixed)

| Core 4t
| Core 5t
| Core 6t
| Core 7/t

| Core 8t

(
n gen (Haswell) : HSD1-HSD173 (none fixed)
n gen (Broadwell) : BDM1-BDM129 (9 fixed)
N gen (Skylake) : SKL1-SKL159 (none fixed)

n gen (Kaby Lake) : KBLOO1-KBL103 (1 fixed)
(

n gen (Cofee Lake) : 001-090 (none fixed)

CPU pipeline

» Since 1961 (IBM stretch project) e e
» Bubbles (data dependency, branching) ', B AT

* Multiple execution units, out of order :
execution, register renaming (Thomasulo

algOrithm - 1967) F D EX | MEM
. . . . A | F o | Ex [UEY we
* Speculation, instruction retirement, o [F o [e we]
branch prediction R LR

Intel pipeline optimization

» 4004 - 8080: each instruction takes several clock cycles
« 8086 - 80386: prefetching queue (6,8,16 bytes), loosely coupled units
* i486: first tightly coupled pipelining (simple instruction per cycle)

* Pentium: dual integer 5 stage pipeline (up to 2 instructions per cycle),
2-bit saturated counter branch predictor

* P6: speculative execution, out of order completion, register renaming
I(in feli)ne 10-14 stages), 2-level local branch predictor (4-bits history
utfer

* Netburst: HT (2 register sets to fill pipeline 20-31 stages long), 2 level
BTB, RSB, IB target array, loop detector

* Core: 14-19 stage pipeline, larger BTB, improved branch predictor -
details unknown

Speculation side effects

e Internal CPU state: registers, caches, counters etc.

« Can be accessible directly or indirectly (side channel method)

* CPU state should be modified only on instruction retirement

« State is modified (cache, branch predictors) also by unretired instructions
-> problem

 Short malicious code can be executed speculatively and modified CPU
state can be read out

* There are several new attacks using speculative state modification in
combination with side channel state exfiltration

. élél)CPUs with speculative execution are vulnerable (i.e. Intel CPUs since

Spectre

 All current CPUs with speculative
execution are vulnerable

 Attack stages:

1. Preparation: branch predictor training
with valid parameters, side channel init

2. Speculation: speculative execution with
invalid parameters

3. Extraction: read out modified state
through side channel

Internal CPU structures

* Side channel can be
1. Cache (flush&reload, prime&probe, evict&time...)
2. Pattern History Table (2-level branch predictor)
3. Branch Target Buffer
4. Return Stack Buffer
5. Translate Lookaside Buffer ..

 Side channel is affected by noise (usually 1-3%)

What data can be read ?

* Different process memory space
» Kernel memory space

* Hypervisor space

* Different VM space

» GSX enclave

* SMM

How it works — Spectre v

for (i = 0; i < predictor_buffer_len; i++) // number of repetitions architecture dependent

func(1); // predictor training for index validity check
clflush(); // eviction can be used
func(attack_index); // index is out of range
for (i =0; i < 256; i++) // go through 256 cache lines

time = measure_access(array1[i]); // one access (cache hit) will be shorter
void func(index) { // victim code

if (index < array2_size) // validity check

tmp "= array1[array2[index]*clsize] ; // 2x access to memory needed. Array1 is indexed

} // memory content at addr &array2[]+index.

// Corresponding cache line to byte value is
loaded

How It works - Spectre v2

* Find a gadget like tmp "= array1[array2[index]] in a victim function
 Find an indirect jump/call in a victim function

* The victim function must be callable from attacker space (a shared library
can be used)

* Make a copy of a page containing gadget in attacker space (CoW)
» Replace the gadget code with the RET instruction

 Train IBP buffer in attacker space with series of calls targeting gadget
address (former code replaced by RET)

 Prepare index value, flush cache containing address of indirect jump and call
victim function

* Mistrained predictor will jump to a gadget with attacker index value
 Side channel read is same as with Spectre v1

Spectre — mitigation 1/4

» Masking index value before test:
tmp = array1[array2[index & Oxff]];
if (index < maxsize)

* Used in linux kernel after source code static analysis

Spectre — mitigation 2/4

Retpolines

Created at google zero labs
Inserted by compiler
Example:

call set_up_target; (1)
capture_spec: (4)

pause;
jmp *%r11 ‘ jmp capture_spec;
set_up_target:

mov %r11, (%rsp); (2)
ret; (3)

Spectre — mitigation 3/4

* Fence:
if (index < maxsize) {
asm (,,lfence®);
tmp = array1[array2[index]];

}

« LFENCE instruction does not execute until all prior instructions
have completed locally, and no later instruction begins
execution until LFENCE completes

« C/C++ equivalent is _mm_Ifence(void)

Spectre — mitigation 4/4

* New control bits in MSR - 1A32_SPEC_CTRL.IBRS,
|IA32_SPEC_CTRL.STIBP, IA32_PRED_CMD.IBPB

* Introduced by pcode update on 2/2018 for almost all Core2 CPUs

* Indirect Branch Restricted Speculation (IBRS): Restricts speculation of
indirect branches.

* Indirect Branch Predictor Barrier (IBPB): Ensures that earlier code’s
behavior does not control later indirect branch predictions.

 Single Thread Indirect Branch Predictors (STIBP): Prevents indirect
branch predictions from being controlled by the sibling Hyperthread.

* IBRS - huge performance impact, refused for linux kernel (retpolines
used instead).

Meltdown

* Specific for Intel CPU

» CPU checks access priviledges at the end of
speculative execution (before retirement)

« Approach same as Spectre, but simpler - user
space code can speculatively read kernel memory.

retry: mov al, byte [rcx]
shl rax, Oxc
jZ retry
mov rbx, gword [rbx + rax]

Meltdown — mitigation

Kernel page table isolation (KPTI) - separate PTT for user and
Kernel spaces

User space code cannot see kernel pages - no mapping exists

Performance impact - for each syscall CR3 must be reloaded
and TLB flushed (new CPUs has PCID feature - only part of TLB

must be flushed)

BranchScope

 Attacking BPU itself

* BPU consists of BTB and DP

* Side channel is Pattern History Table - part of BPU

* Ability to determine victims branch taken/not taken state

Pattern history table

e Prediction

Y

Branch history

taken take e 0110 ——
e A W Tl N .
/] sticugly) / cakly / ACly \\ /P strergly \ | tomn = X
vl A l < r-:::;:n'r‘ '\ nat taken _ tak~ -/| K tacen //" ORS
~ e P an S e
~— el ot taken
cltahen ra 0

1st level predictor - saturating counter

(FSM) 2nd level adaptive predictor - each entry is

FSM

How it works - BranchScope

. Forlg(eﬁ to use 1-level predictor (T/nT decision dependent only
on

 Slows down victim proces (i.e. modifies scheduler) to allow
only single branch execution during context switch

* Stages:
1. Prime PHT entries (series of random branches - about 100k branch
and/or nop instructions needed)

2. Victim code execution (PHT state change) with attacker branch
intensive code running to keep victim using 1-level predictor

3. Probe PHT entry (examine branch target) - FSM uses 2-bit counter,
by TT, NN probe can be current state determined. Resulted time is
measured to decide miss/hit.

Sranchscope mitigation

* SW based:

 Conditional instructions (i.e. CMOV) instead of branches
« Change algorithms to remove branch dependecies on data

« HW based:

« PHT randomization (adding a random input to index function)
 Explicit BPU disablement for sensitive branches
« BPU partitioning (i.e. separate BPU for user, kernel and GSX)

Intel SGX

e Software Guard Extensions
* Since Skylake

* CPU circuits and instructions providing protection against
compromised user and system code

* Even kernel and hypervisor has no access to Secure Enclave
* Protection against physical memory attacks (encrypted memory)

* Data are encapsulated and code can be entered and leaved only
by special instructions through Call Gate

» SGX is proved to be Spectre and BranchScope vulnerable

Intel M

Computer embedded in the PCH (initially MCH)

Own MAC and IP address (OOB interface)

All network traffic goes to ME first

Communicates through HCI with host OS

Serial host console can be attached

First implemented inside of ICH7 in 2005 for high-end systems
Since 2008 embedded in all chipsets

Non optional, part of booting process and power management
Running independently on the power state of main CPU

In fact there are 3 x86 CPUs inside the chipset

Initially ARC core with ThreadX RTOS

Since ME 11.x Intel Quark x86 with MINIX 3

CPU
SV Agents
Qs

r'

PCH

Intel® MF

Filters
Sensors
MALC

DDR2

DDRZ

[rAam

FLASH
[siCs
L MEIW

[CbNtwkFW

| Intai® 328560M Clgablt
“ Netwer<Connection
‘ 00B

Intel AMT

Micro-Controller
iLocated in Craphics and Memory Controller Hub Frmware)
_ Imal® Active Managamnant Technaingy Applicafons
= Vrsset Managament, Third-Pary Data Store, Remaote Management, efc.)
CPU Graghics & Memory DDR2 Acmin Sarvices | | Core Services | | Management Network
Controller Hub Confiouraion, (Power Manage. Savices Sarvicet
Software Agents —_— v Provisioning, ACL Noa-Volatile, (Evert/Neting (HTTR. TCPAR.
Micro-Controllar DDRZ Mansgemant, etc) | | Memory Manage, Manages, drat IS, otc.)
Uperaling System) breatar contnl
ote.)
A Nanagement Zngine Hardware Asstracion Layer
/0 Controller Hub | LANController ThraadX Fernel
:’mh F — l W.ﬂm Qut-of-3and ﬁ
Sensors = »
e Ggabit || @s0zZ11 Host LAN DMA ME
Ethenet | Interfaces & MAC Peripheral
{IDE-R, SOL. {Out-of-Band UF Cryphy, NVM,
HECH and Circuit SMRUS...
POI entities.. Dressbes Pitens)

Rings of privileges

The operating systems

Code you
know
about

Code
you
don’t
know
about

Ring 3 (User)

Ring O (Linux)

Ring -1 (Xen etc.)

X86 CPU you know about

X86 CPU(s) you don't know about

What Intel does to secure M

- code ?

* Some ME and AMT modules encoded with Huffman code since ME 6.x
* ARC core Huffman dictionary was decoded already

* Quark (ME 11.x+) dictionary is not publicly known yet

* It was claimed on June 2017 that 89% of code and 86% of data are

decoded

* Intel released INTEL-SA_00086 advisory for ME 6.x-11.x in Q3 2017

* CVE-2017-5705
« CVE-2017-5708
* CVE-2017-5711
* CVE-2017-5712

-> Attacker can execute arbitrary code on ME

Silent Bob is Silent

(2 inside B0

« AMT uses digest auth protocol for Admin user =
* In Q2 2017 critical vulnerability was published

* CVE-2017-5689: when empty auth response is sent, Admin is
always authenticated

* |t is enough to have http proxy and clear a response value

« CVSSv3 score of 9.8 out of 10
* There is > 5000 AMT accessible over internet (found by Shodan)

Summary

* Modern CPUs contain a tens of “errata” in each generation
causing unpredictable CPU behavior

* All vendors have same problems

* Speculative execution has exploitable side effects - fix will
need architectural redesign

* Most risks can be mitigated on pcode, BIOS, compiler or OS
level but have performance impact

« CPU management subsystems have vulnerabilities and are
dangerous when exploited

